Loose Hamilton cycles in 3-uniform hypergraphs of high minimum degree

نویسندگان

  • Daniela Kühn
  • Deryk Osthus
چکیده

We say that a 3-uniform hypergraph has a Hamilton cycle if there is a cyclic ordering of its vertices such that every pair of consecutive vertices lies in a hyperedge which consists of three consecutive vertices. Also, let C4 denote the 3-uniform hypergraph on 4 vertices which contains 2 edges. We prove that for every ε > 0 there is an n0 such that for every n n0 the following holds: Every 3-uniform hypergraph on n vertices whose minimum degree is at least n/4+ εn contains a Hamilton cycle. Moreover, it also contains a perfect C4-packing. Both these results are best possible up to the error term εn. © 2006 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimum vertex degree conditions for loose Hamilton cycles in 3-uniform hypergraphs

We investigate minimum vertex degree conditions for 3-uniform hypergraphs which ensure the existence of loose Hamilton cycles. A loose Hamilton cycle is a spanning cycle in which consecutive edges intersect in a single vertex. We prove that every 3-uniform n-vertex (n even) hypergraph H with minimum vertex degree δ1(H) ≥ ( 7 16 + o(1) ) ( n 2 ) contains a loose Hamilton cycle. This bound is asy...

متن کامل

Minimum Vertex Degree Conditions for Loose Hamilton Cycles in 3-uniform Hypergraphs

We investigate minimum vertex degree conditions for 3-uniform hypergraphs which ensure the existence of loose Hamilton cycles. A loose Hamilton cycle is a spanning cycle in which consecutive edges intersect in a single vertex. We prove that every 3-uniform n-vertex (n even) hypergraph H with minimum vertex degree δ1(H) ≥ ( 7 16 + o(1) ) (n 2 ) contains a loose Hamilton cycle. This bound is asym...

متن کامل

Perfect Matchings, Tilings and Hamilton Cycles in Hypergraphs

This thesis contains problems in finding spanning subgraphs in graphs, such as, perfect matchings, tilings and Hamilton cycles. First, we consider the tiling problems in graphs, which are natural generalizations of the matching problems. We give new proofs of the multipartite Hajnal-Szemerédi Theorem for the tripartite and quadripartite cases. Second, we consider Hamilton cycles in hypergraphs....

متن کامل

Minimum vertex degree threshold for loose Hamilton cycles in 3-uniform hypergraphs

We show that for sufficiently large n, every 3-uniform hypergraph on n vertices with minimum vertex degree at least (n−1 2 ) − (b 3 4 nc 2 ) + c, where c = 2 if n ∈ 4N and c = 1 if n ∈ 2N\4N, contains a loose Hamilton cycle. This degree condition is best possible and improves on the work of Buß, Hàn and Schacht who proved the corresponding asymptotical result.

متن کامل

Dirac-type results for loose Hamilton cycles in uniform hypergraphs

A classic result of G. A. Dirac in graph theory asserts that every n-vertex graph (n ≥ 3) with minimum degree at least n/2 contains a spanning (so-called Hamilton) cycle. G. Y. Katona and H. A. Kierstead suggested a possible extension of this result for k-uniform hypergraphs. There a Hamilton cycle of an n-vertex hypergraph corresponds to an ordering of the vertices such that every k consecutiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. B

دوره 96  شماره 

صفحات  -

تاریخ انتشار 2006